

  Cray has a long tradition of high performance compilers on Cray
platforms (Traditional vector, T3E, X1, X2)
  Vectorization
  Parallelization
  Code transformation
  More…

  Investigated leveraging an open source compiler called LLVM

  First release December 2008

Cray Inc. Confidential Slide 2

Cray Inc. Proprietary Slide 3

X86 Code
Generator

Cray X2 Code
Generator

Fortran Front End

Interprocedural Analysis

Optimization and
Parallelization

C and C++ Source

Object File

C
om

pi
le

r

C & C++ Front End

Fortran Source C and C++ Front End
supplied by Edison Design
Group, with Cray-developed
code for extensions and
interface support

X86 Code Generation from
Open Source LLVM, with
additional Cray-developed
optimizations and interface
support

Cray Inc. Compiler
Technology

  Standard conforming languages and programming models
  Fortran 2003
  UPC & CoArray Fortran

  Fully optimized and integrated into the compiler
  No preprocessor involved
  Target the network appropriately:

  GASNet with Portals
  DMAPP with Gemini & Aries

  Ability and motivation to provide high-quality support for
custom Cray network hardware

  Cray technology focused on scientific applications
  Takes advantage of Cray’s extensive knowledge of

automatic vectorization
  Takes advantage of Cray’s extensive knowledge of

automatic shared memory parallelization
  Supplements, rather than replaces, the available compiler

choices

  Make sure it is available
  module avail PrgEnv-cray

  To access the Cray compiler
  module load PrgEnv-cray

  To target the various chip
  module load xtpe-[barcelona,shanghi,istanbul]

  Once you have loaded the module “cc” and “ftn” are the Cray
compilers
  Recommend just using default options
  Use –rm (fortran) and –hlist=m (C) to find out what happened

  man crayftn

Cray Inc. Confidential
Slide 5

  Excellent Vectorization
  Vectorize more loops than other compilers

  OpenMP 3.0
  Task and Nesting

  PGAS: Functional UPC and CAF available today
  C++ Support
  Automatic Parallelization

  Modernized version of Cray X1 streaming capability
  Interacts with OMP directives

  Cache optimizations
  Automatic Blocking
  Automatic Management of what stays in cache

  Prefetching, Interchange, Fusion, and much more…

Cray Inc. Confidential Slide 6

  Loop Based Optimizations
  Vectorization
  OpenMP

  Autothreading
  Interchange
  Pattern Matching
  Cache blocking/ non-temporal / prefetching

 Fortran 2003 Standard; working on 2008
 PGAS (UPC and Co-Array Fortran)

  Some performance optimizations available in 7.1
 Optimization Feedback: Loopmark
 Focus

Cray Inc. Confidential
Slide 7

 Cray compiler supports a full and growing set of
directives and pragmas

!dir$ concurrent
!dir$ ivdep
!dir$ interchange
!dir$ unroll
!dir$ loop_info [max_trips] [cache_na] ... Many more
!dir$ blockable

man directives
man loop_info

Cray Inc. Confidential
Slide 8

  Compiler can generate an filename.lst file.
  Contains annotated listing of your source code with letter indicating important

optimizations
%%% L o o p m a r k L e g e n d %%%
 Primary Loop Type Modifiers
 ------- ---- ---- ---------
 a - vector atomic memory operation
 A - Pattern matched b - blocked
 C - Collapsed f - fused
 D - Deleted i - interchanged
 E - Cloned m - streamed but not partitioned
 I - Inlined p - conditional, partial and/or computed
 M - Multithreaded r - unrolled
 P - Parallel/Tasked s - shortloop
 V - Vectorized t - array syntax temp used
 W - Unwound w - unwound

Cray Inc. Confidential
Slide 9

•  ftn –rm … or cc –hlist=m …
 29. b-------< do i3=2,n3-1
 30. b b-----< do i2=2,n2-1
 31. b b Vr--< do i1=1,n1
 32. b b Vr u1(i1) = u(i1,i2-1,i3) + u(i1,i2+1,i3)
 33. b b Vr > + u(i1,i2,i3-1) + u(i1,i2,i3+1)
 34. b b Vr u2(i1) = u(i1,i2-1,i3-1) + u(i1,i2+1,i3-1)
 35. b b Vr > + u(i1,i2-1,i3+1) + u(i1,i2+1,i3+1)
 36. b b Vr--> enddo
 37. b b Vr--< do i1=2,n1-1
 38. b b Vr r(i1,i2,i3) = v(i1,i2,i3)
 39. b b Vr > - a(0) * u(i1,i2,i3)
 40. b b Vr > - a(2) * (u2(i1) + u1(i1-1) + u1(i1+1))
 41. b b Vr > - a(3) * (u2(i1-1) + u2(i1+1))
 42. b b Vr--> enddo
 43. b b-----> enddo
 44. b-------> enddo

 ftn-6289 ftn: VECTOR File = resid.f, Line = 29
 A loop starting at line 29 was not vectorized because a recurrence was found on "U1"

between lines 32 and 38.
ftn-6049 ftn: SCALAR File = resid.f, Line = 29
 A loop starting at line 29 was blocked with block size 4.
ftn-6289 ftn: VECTOR File = resid.f, Line = 30
 A loop starting at line 30 was not vectorized because a recurrence was found on "U1"

between lines 32 and 38.
ftn-6049 ftn: SCALAR File = resid.f, Line = 30
 A loop starting at line 30 was blocked with block size 4.
ftn-6005 ftn: SCALAR File = resid.f, Line = 31
 A loop starting at line 31 was unrolled 4 times.
ftn-6204 ftn: VECTOR File = resid.f, Line = 31
 A loop starting at line 31 was vectorized.
ftn-6005 ftn: SCALAR File = resid.f, Line = 37
 A loop starting at line 37 was unrolled 4 times.
ftn-6204 ftn: VECTOR File = resid.f, Line = 37
 A loop starting at line 37 was vectorized.

 Tuned Performance
  Vectorization (We vectorize too much)
  Non-temporal caching
  Cache blocking
  Many end-cases

 Spilling
 Scheduling
 Still a young compiler

Cray Inc. Confidential
Slide 12

 -hbyteswapio
 Link time option
 Applies to all unformatted fortran IO

 Assign command
 With the PrgEnv-cray module loaded do this:

setenv FILENV assign.txt
assign -N swap_endian g:su
assign -N swap_endian g:du

 Can use assign to be more precise
Cray Inc. Confidential

Slide 13

 OpenMP is ON by default
  Optimizations controlled by –Othread#
  To shut off use –Othread0 or –xomp or –hnoomp

 Autothreading is NOT on by default;
  -hautothread to turn on
  Modernized version of Cray X1 streaming capability
  Interacts with OMP directives

If you do not want to use OpenMP and have OMP
directives in the code, make sure to make a run

with OpenMP shut off at compile time

Cray Inc. Confidential
Slide 14

 An OpenMP task is an explicit region of code whose
execution can be deferred and/or executed in parallel
with the surrounding code
  Completion is guaranteed by synchronization or end of

parallel region
  Must be contained inside a OMP parallel region
  A task is “put on a queue” to be executed “later”
  Any thread of the same parallel region that is sitting on a

sync point can grab a task off the queue and execute it
 Sort of like “futures” but with limitations

  Don’t have ID’s, must wait for all or none
  But maybe are good enough?

Cray Inc. Confidential
Slide 15

 Nested OpenMP
 OMP parallel region inside of an OMP parallel region
  “New threads” are used at each level

  Need to use new ENV VARS to control nesting
  Need to use ENV VARS not in OMP standard for better control

 OMP Tasks inside of parallel regions
 Can be nested
 Can be both more and less natural way of

programming

!$omp parallel do …
do i=1,4
 call complex_matmul(…)
enddo

Subroutine complex_matmul(…)
!$omp parallel do private(j,jend,jsize)! num_threads(p2)
 do j=1,n,nb
 jend = min(n, j+nb-1)
 jsize = jend - j + 1
 call zgemm(transA,transB, m,jsize,k, &
 alpha,A,ldA,B(j,1),ldb, beta,C(1,j),ldC)
 enddo

Cray Inc. Confidential
Slide 17

Cray Inc. Confidential
Slide 18

0

10

20

30

40

50

60

70

80

Serial ZGEMM High Level OMP
ZGEMM 4x1

Nested OMP
ZGEMM 3x3

Nested OMP
ZGEMM 4x2

Nested OMP
ZGEMM 2x4

Low level OMP
ZGEMM 1x8

G
Fl

op
s

Parallel method and Nthreads at each level

4 x ZGEMM 1000x1000

Cray Inc. Confidential
Slide 19

0

5

10

15

20

25

30

35

Serial ZGEMM High Level OMP
ZGEMM 4x1

Nested OMP
ZGEMM 3x3

Nested OMP
ZGEMM 4x2

Low Level
ZGEMM 1x8

G
Fl

op
s

Parallel method and Nthreads at each level

4 x ZGEMM 100x100

 Nested omp can GREATLY expand the amount of
parallelism one can attack using OpenMP

 Most people set the environment variable via
omp_num_threads
  This, as currently defined, is not adequate for nested parallel

regions
  Using the “num_threads” clause may be both tricky and

impractical
  Cray has invented its own cray_omp_num_threads variable

 Nested parallel regions is a relatively static distribution

 OMP tasking may be a way of getting around some or
all of these issues Cray Inc. Confidential

Slide 20

 7.2 release planned for Q1 10
 Mostly about performance
 Magny Cours support

And beyond….
 Fortran 2008
 More tasking capabilities
 Optimized PGAS
 Support for AVX (256 bit vectors)
 Support for Intel

Cray Inc. Confidential
Slide 21

 Cray Compiler is an interesting alternative for
some codes

 Unique and different capabilities can result is
significantly different performance.

 Gemini and PGAS will make the Cray compiler
even more relevant.

Cray Inc. Confidential
Slide 22

